宾大推出首个藤校AI专业! 4676
如果对留学及海外就业有任何疑问,欢迎拨打电话 022-2328-9071/9075
美国藤校宾夕法尼亚大学2024年2月13日宣布,其工程和应用科学学院推出人工智能方向的工学学士学位Bachelor of Science in Engineering in Artificial Intelligence.
该专业是美国藤校首个人工智能本科专业之一。2024年9月第一次向全球学生开放,由电气和系统工程系及计算机与信息科学系共同管理。
该学位提供人工智能技术的数学和算法基础,以及编程的实践经验,以及使用人工智能工具和基础模型。以更广阔的视角补充这些工程技能,学生从认知科学的角度学习智能,并培养负责任地开发人工智能以造福社会所需的问题(和解决方案)感。最后,学生可以选择一个方向,包括机器学习、视觉和语言、数据和社会、机器人、人工智能和卫生系统。感兴趣的学生可以通过访问宾夕法尼亚大学课程目录了解以下课程的更多信息。
宾大的人工智能本科学位项目将于2024年秋季向学生开放,由电气与系统工程系(ESE)和计算机与信息科学系(CIS)共同管理。
课程链接:https://ai.seas.upenn.edu/curriculum/
AI 选修及专业方向课程如下:
AI Electives:
In addition to the courses above, students will have an opportunity to take six AI courses selected from the list of approved courses below, along with the 1-year senior design sequence:
Machine Learning Electives
- CIS 3333: Mathematics of Machine Learning
- ESE 5460: Principles of Deep Learning
- ESE 5140: Graph Neural Networks
- ESE 4380: Machine Learning for Time-Series Data
- ESE 6450: Deep Generative Models
- CIS 6200: Advanced Deep Learning
- CIS 6250: Computational Learning Theory
- ESE 6740: Information Theory
- CIS 7000: Trustworthy AI
Optimization, Systems, and Control Electives
- ESE 3030: Stochastic Systems Analysis and Simulation
- ESE 5000: Linear Systems Theory
- ESE 5050: Control Systems
- ESE 5060: Linear Optimization
- ESE 6050: Modern Convex Optimization
- ESE 6060: Combinatorial Optimization
- ESE 6190: Model Predictive Control
- ESE 6180: Learning for Dynamics and Control
Other AI Electives
- MEAM 5200: Robotics
- MEAM 6200: Advanced Robotics
- ESE 6500: Learning in Robotics
- ESE 6150: F1/10 Autonomous Racing Cars
- CIS 4120: Human-Computer Interaction
- CIS 5800: Machine Perception
- CIS 5360: Computational Biology
- BE 5210: Brain Computer Interfaces
- CIS 4500: Databases
- CIS 6500: Advanced Topics Databases
- CIS 3990: Wireless and Mobile Sensing
- NETS 3120: Theory of Networks
- NETS 4120: Algorithmic Game Theory
- ESE 4040: Engineering Markets
The above list will evolve as new courses are added to the program.
AI Concentrations:
The seven AI elective courses can be structured along AI concentrations depending on the interests of the student. Concentrations are optional and consist of four courses in a specific theme.
- Robotics
- Vision/Language
- Machine Learning
- Data/Society
- Health/Systems